Some of you may have already seen our rugged professional mission control units also presented here on DIYdrones. Most of those are produced to at least industrial IP specifications, but developers and DIYers are constantly bombarding us with requests for lighter and especially cheaper integrated solutions that would be at least on the edge of the affordable in applications where fully rugged builds and tightly waterproof features are not an absolute must.

Well, this is our first shot at this, so we’re trying to get as much of your valuable input as possible to create a practical hand-held controller that may as well help a lot of people. We’ve already built the first prototype based on our current RHH line, some of our own ideas and customer input, so it’s probably a good start for a conversation on the technical details for a more generic purpose unit with extensive DIY options.
Unfortunately, even if we drop most of the IP67 parts and build features of the RHH design, this particular product will still cost around 1200 Euros in very small series, but at least it’s not the fully rugged €4k-€7k range. The final price is going to be determined mainly by production numbers, but at the moment we’re just aiming for a batch of a few dozen units, just to be on the safe side.
The current technical content of the prototype can serve both direct FPV operation and/or payload control, both in the very same neat little package:

  • 7″ high contrast and high brightness (700 nit) 1280×800 screen, non-reflective matte or low reflectance glossy surface
  • non-bluescreening LCD controller with AV/HDMI/VGA input and full menu control
  • USB programmable er9x/OpenTX compatible open source RC TX logic with full menu control (eepe compatible)
  • high quality quad ball bearing Hall effect sensor RC style joysticks with full access to slide/ratchet/spring settings on both sides, thumber and pincher operation supported by design
  • fully managed Li-ion battery system with simple micro USB charge port and high current connector alternative
  • industrial grade ultra miniature toggle and pushbutton switches, optional pot and rotary switch
  • high impact industrial ABS enclosure, 210x280mm compact footprint
  • charger, USB programmer, PPM and HMD AV connections as standard

  • optional built-in RC TX RF module (FrSky XJT, TBS Crossfire, EzUHF, etc.)
  • optional built-in AV RX (5.8GHz, 1.2GHz, etc.)
  • optional external RF box setup with single field cable
  • optional external video connection (CVBS/HDMI/VGA)
  • optional wireless ground video relay (Miracast)
  • optional IT hw for IP video streaming, telemetry, etc.

As you can see from the above, this is not a telemetry station with any kind of embedded IT hardware, just a direct FPV and payload controller. We currently manufacture a fully rugged 10″ all-in-one telemetry GCS with a powerful Android hw, which we would also like to make a light version of, but we’re still working out the kinks there, and we’ll let you know.

The main questions we would like to ask You are mainly about the acceptable or necessary build and kit readiness levels, the most generic but still practical control layout and labels, built-in or optional RF modules, etc. We also welcome any other input that you may find important here. This is just a short list of issues that we’re contemplating at the moment:

  • Toggles, pots, other controls… shall we adhere to a generic RC control layout (especially 9x type)?
  • What is your opinion of the current custom layout that caters for both payload and FPV operation with remapping?
  • Pots in particular, do you need them at all in a professional controller?
  • 6 position rotary flight mode switch, do you need them while you barely use 2-3 flight modes in general?
  • Joystick trims, do you need them at all in a professional controller? After all, they are a major source of mishaps in non-RC trained fiddly hands…
  • Single PCB construction or PCB mounted RC switches with connectorised/solder pad-based wiring for DIY purposes?
  • Moderate waterproof features, we can seal the electronics of the open joysticks, so the water can go simply through the body with port holes in the bottom service covers (or built-in silica pad) … is this something you need to survive a passing shower?

If it’s not clear from all of the above, this is NOT a crowdsourced project, at least not financially, so you don’t need to pledge any money to take part in this little endeavour. We’re not a one-trick pony start-up venture as we’ve been in this industry for a decade now, but we have to keep learning from our customers and peers.

This is a demonstration shop for test - no order will be honored. Dismiss

%d bloggers like this: